МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОБЪЕКТОВ И ПРОЦЕССОВ»

ОБЩИЕ СВЕДЕНИЯ

Цели: усвоение основ идентификации объектов и систем по экспериментальным данным во временной и частотной областях, методов и алгоритмов построения и реализации математических моделей объектов и систем на ЭВМ, планирования эксперимента, анализа полученных результатов и упрощение моделей и их оценок.

Задачи: научить студентов использовать современные программные средства идентификации для построения математических моделей объектов и системы различной сложности; знать: виды и структуры исследуемых объектов и систем; ограничения, накладываемые на эксперимент, оценки параметров, критерии адекватности; методы и алгоритмы реализации математических моделей сложных систем с произвольным типом перекрестных связей между автономными каналами систем на ЭВМ и анализа полученных результатов; основные программные средства идентификации линейных и нелинейных объектов и систем.

Компетенции, достижение которых планируется по завершении изучения курса (см. табл. 1):

		Таолица 1
$N_{\underline{0}}$	Компетенция	Уровень овладения
Π/Π		
1.	ПК-12 способностью выбирать	знать: основы построения многомерных систем
	методы и разрабатывать	управления и их реализацию на ЭВМ;
	алгоритмы решения задач	уметь: составлять математическое описание
	управления и проектирования	многомерных динамических объектов;
	объектов автоматизации	владеть: навыками проектирования многомерных
		динамических объектов и систем управления.
2.	ПК-5 владением существующими	знать: способы фильтрации входных
	методами и алгоритмами решения	экспериментальных данных, получаемых с
	задач цифровой обработки	реальных технических объектов;
	сигналов	уметь: выбирать оптимальный метод идентифика-
		ции систем во временной и частотной областях на
		основе имеющейся априорной информации;
		владеть: программными продуктами
		идентификации систем управления по значениям
		реальных экспериментальных сигналов.
3.	ОПК-5 владением методами и	знать: методы и средства получения информации;
	средствами получения, хранения,	уметь: применять информационные технологии
	переработки и трансляции	для получения информации с реальных
	информации посредством	технических объектов;
	современных компьютерных	владеть: методами получения информации с
	технологий, в том числе в	реальных технических объектов.
	глобальных компьютерных сетях	

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Дисциплина включает в себя один раздел, который сведен в таблицу 2.

Таблица 2

No manuala		Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
разд	раздела		Всего	Л	ПЗ	ЛР
	1	Основы анализа и построения математических моделей объектов и процессов	48	16	32	0

ЛЕКЦИИ

Проводится 15 лекций общим объёмом 16 часов (табл. 3).

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во
1	1	Обзор литературы. Введение в проблему идентификации динамических	часов
		объектов и систем. Основные определения и понятия.	
2	1	Объекты идентификации. Классификация объектов и систем.	1
3	1	Условия, ограничивающие точность решения задач идентификации технических объектов и систем различного назначения и применения.	1
4	1	Построение математических моделей методом наименьших квадратов (МНК). Введение. Матрица плана и вид уравнений моделей. Ограничения на эксперимент и параметры. Вывод формулы оптимальной оценки параметров модели. Ковариационная и дисперсионная матрицы.	1 1
5	1	Модели объектов при заданной и вычисляемой дисперсии ошибок наблюдений. Критерии адекватности моделей. Виды оценок параметров при различных законах распределения.	
6	1	Описание состояния системы. Дискретные и непрерывные динамические системы. Управляемость динамических объектов и систем. Матричные формы записи. Примеры.	
7	1	Наблюдаемость динамических объектов и систем. Матричные формы записи. Примеры.	1
8	1	Идентифицируемость динамических объектов и систем. Матричные формы записи. Примеры.	1
9	1	Методы оценивания параметров. Алгоритмы идентификации одномерных линейных динамических объектов во временной области. Фильтр Калмана.	
10	1	Алгоритмы идентификации двумерных линейных динамических объектов с прямыми, обратными и смешанными перекрестными связями во временной области.	
11	1	Программная реализация алгоритмов идентификации линейных динамических объектов и систем во временной области.	1

Продолжение табл. 3

		<u> </u>	
12	1	Алгоритмы идентификации одномерных и двумерных линейных динамических объектов с прямыми, обратными и смешанными перекрестными связями в частотной области.	
13	1	Программная реализация алгоритмов идентификации линейных динамических объектов и систем в частотной области.	1
14	1	Алгоритмы идентификации нелинейных динамических объектов в частотной области. Модель Гаммерштейна. Модель Винера. Модель общего вида. Модель с параллельным соединением моделей общего вида. Программная реализация алгоритмов идентификации нелинейных динамических объектов и систем в частотной области.	1
15	1	Программные средства идентификации и моделирования, перспективы их развития. Пакеты прикладных программ.	1

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Проводится 6 практических занятий общим объёмом 32 часа (табл. 4).

Таблица 4

No	No	Наименование или краткое содержание практического занятия,	Кол-
			во
занятия	занятияраздела семинара		
1		Идентификация одномерных линейных динамических объектов и систем во временной области	6
2		Идентификация одномерных линейных динамических объектов и систем в частотной области	6
3		Идентификации двумерных линейных динамических объектов и систем во временной области	6
4		Идентификации двумерных линейных динамических объектов и систем в частотной области	6
5		Идентификация нелинейных динамических объектов и систем моделями различных видов	6
6	1	Автоматизированное исследование идентифицированных моделей методами моделирования. Пакеты прикладных программ моделирования и исследования сложных систем	_

Методические указания по выполнению практических заданий

Практические задания представляют собой решение задач идентификации для конкретной исходной схемы системы в программных продуктах идентификации. Для выполнения каждой задачи необходимо составить математическое описание заданной системы, выполнить проектирование в программных продуктах моделирования и идентификации и провести сравнительный анализ значений параметров, полученных теоретически, со значениями параметров, которые получены в продуктах идентификации. Выполнение заданий позволяет приобрести необходимые навыки и умения работы в продуктах идентификации, а также овладеть соответствующим математическим аппаратом теории систем для выполнения самостоятельных и контрольных работ.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТА

Каждый студент самостоятельно выполняет курсовую работу и представляет результаты выполнения в виде отчета (см. табл. 5).

Таблица 5

		1			
Выполнение СРС					
Вид работы и содержание задания	Список литературы	Кол-во часов			
ооъектов». Согласно выдаваемого каждому студенту индивидуального технического задания	Основная литература 1-3. Дополнительная литература 1,2	56			
Подготовка к экзамену	Основная литература 1	4			

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Список оценочных средств представлен в табл. 6.

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	№№ заданий
Все разделы	ПК-12 способностью выбирать методы и разрабатывать алгоритмы решения задач управления и проектирования объектов автоматизации	Экзамен	1-8, 29-40
Все разделы	ПК-5 владением существующими методами и алгоритмами решения задач цифровой обработки сигналов	Экзамен	9-28
Основы анализа и построения математических моделей объектов и процессов	ОПК-5 владением методами и средствами получения, хранения, переработки и трансляции информации посредством современных компьютерных технологий, в том числе в глобальных компьютерных сетях	Защита курсовой работы	1
Основы анализа и построения математических моделей объектов и процессов	ПК-12 способностью выбирать методы и разрабатывать алгоритмы решения задач управления и проектирования объектов автоматизации	Тестирование	1
Основы анализа и построения математических моделей объектов и процессов	ПК-12 способностью выбирать методы и разрабатывать алгоритмы решения задач управления и проектирования объектов автоматизации	Контрольная работа	1

ТИПОВЫЕ ЗАДАНИЯ, ПРОЦЕДУРЫ ПРОВЕДЕНИЯ, КРИТЕРИИ ОЦЕНИВАНИЯ

1. Тестирование

Процедура проведения

Студент проходит тестирование, включающее в себя ответ на 3 случайно выбранных вопроса по основам анализа математических моделей.

Критерии оценивания

Зачтено: правильные ответы на 2-3 вопроса.

Не зачтено: отсутствие ответов или ответ только на 1 вопрос.

Пример

- 1. Активная идентификация состоит в том, что...
- -в контур управления дополнительно вводятся тестовые сигналы,
- +объект управления исследуется отдельно при помощи тестовых сигналов,
- -объект управления исследуется в нормальном режиме эксплуатации.
- 2. Пассивная идентификация состоит в том, что...
- -в контур управления дополнительно вводятся тестовые сигналы,
- -объект управления исследуется отдельно при помощи тестовых сигналов,
- +объект управления исследуется в нормальном режиме эксплуатации.
- 3. Модель Гаммерштейна представляет собой...
- -соединение двух нелинейных звеньев,
- +соединение нелинейного и динамического звена,
- -соединение динамического и нелинейного звена.

2. Контрольная работа

Задание

Для заданной структурной схемы многомерного объекта получить системы уравнений для выходных сигналов и определить блочные матрицы.

Процедура проведения

Проводится письменно. Студенту необходимо ознакомиться с основными правилами составления блочных матричных уравнений по структурной схеме системы.

Критерии оценивания

Зачтено: правильное решение 70% и более задачи.

Не зачтено: решение менее 70% задачи.

Пример

Структурная схема системы задана в следующем виде (рис. 1):

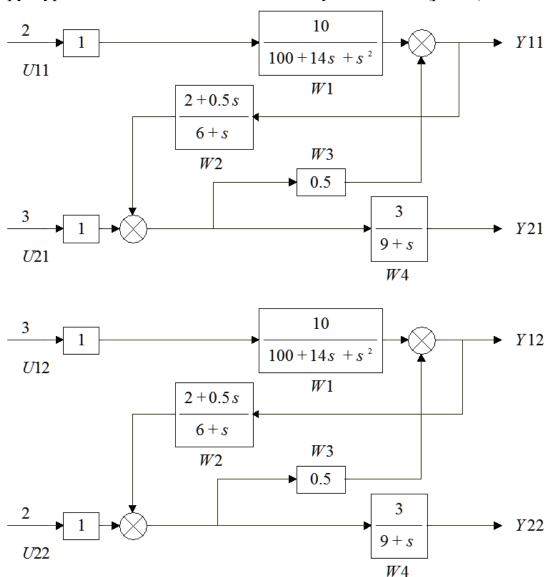


Рис. 1. Структурная схема системы

Системы уравнений для выходных сигналов имеют вид:

$$\begin{cases} Y11 = U11 \cdot W1 + Y21 \cdot W4^{-1} \cdot W3; \\ Y12 = U12 \cdot W1 + Y22 \cdot W4^{-1} \cdot W3; \\ Y21 = U21 \cdot W4 + Y11 \cdot W2 \cdot W4; \\ Y22 = U22 \cdot W4 + Y12 \cdot W2 \cdot W4. \end{cases}$$

Блочные матрицы для систем уравнений имеют вид:

$$\begin{bmatrix} Y11 \\ Y12 \\ Y21 \\ Y22 \end{bmatrix} = \begin{bmatrix} U11 & Y21 & 0 & 0 \\ U12 & Y22 & 0 & 0 \\ \hline 0 & 0 & U21 & Y11 \\ 0 & 0 & U22 & Y12 \end{bmatrix} \cdot \begin{bmatrix} W1 \\ W4^{-1} \cdot W3 \\ \hline W4 \\ W2 \cdot W4 \end{bmatrix}$$

3. Курсовая работа

Курсовая работа состоит из двух частей. Первая часть посвящена исследованию двумерного объекта во временной и частотной областях. Вторая часть основана на проведении моделирования и идентификации реальной системы управления.

I Часть

- 1. По структурной схеме системы составить математическую модель объекта (блочные матричные выражения и соотношения элементов системы).
- 2. Выбрать параметры элементов системы таким образом, чтобы система стала устойчивой. Для этого провести моделирование в программном продукте SimACS/MATLAB для двух экспериментов. Привести графики выходов модели объекта *Y*11, *Y*21, *Y*12, *Y*22 для каждого эксперимента.
- 3. Выполнить анализ объекта в начальный и конечный момент времени. Свести теоретические и экспериментальные значения выходов системы в таблицу.
- 4. В программе Acsocad IdACS подключить соответствующие файлы с результатами моделирования и провести идентификацию во временной области всех передаточных функций. Сравнить оценочные значения параметров звеньев со значениями, полученными аналитическим методом. Привести диалоговое окно программы с результатами идентификации, а также полученные графические зависимости входа передаточной функции, реального и оценочного выхода.
- 5. Выполнить проектирование математического описания в программном продукте MathCAD. Используя методы теории управления, получить действительную и мнимую части всех передаточных функций. Провести анализ теоретических значений передаточных функций при $\omega=0$ и $\omega\to\infty$, полученные через пределы и через уравнения для выходов двух опытов, и сравнить их. Построить графики АФЧХ для каждого звена.
- 6. Вывести в файл значение частоты и соответствующие ей значения действительной и мнимой части. В программе Acsocad IdACS подключить файлы с частотными характеристиками передаточных функций и провести идентификацию в частотной области. Сравнить оценочные значения параметров звеньев со значениями, полученными аналитическим методом. Привести диалоговое окно программы с результатами идентификации, а также полученные графические зависимости действительной и мнимой части реального и оценочного сигнала.
- 7. Выполнить идентификацию во временной области в программе SimACS, используя встроенный алгоритм идентификации. Для этого необходимо выгрузить все сигналы модели Y11, Y21, Y12, Y22 в файл, создать модель, аналогичную рассматриваемой, указать неизвестные параметры звеньев, задав им имя P[0], P[1] и P[2] соответственно. К выходам У подключить компараторы. Для каждого звена задать любые 1, 2, 3 параметра неизвестными и на основе выходных сигналов определить эти неизвестные параметры. Для 1 и 2 параметров привести карту идентификации.

II Часть

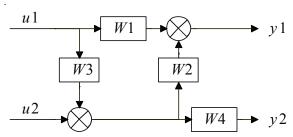
- 1. Для заданной ниже системы по уравнениям составить структурную схему системы, подобрать параметры входного сигнала и элементов системы для достижения устойчивого состояния, выполнить моделирование и привести графики процессов. При необходимости добавить в систему регулятор.
- 2. Задавая последовательно 1, 2, 3 неизвестных параметра на модели, в программе SimACS выполнить идентификацию объекта и привести результаты.

Процедура проведения

Техническое задание выдается в первую неделю семестра. На защиту студент предоставляет развернутое техническое задание, пояснительную записку на 20-25 страницах в отпечатанном виде, содержащую решение и соответствующие иллюстрации. На защите студент отвечает на вопросы преподавателя.

Критерии оценивания

Отлично: за курсовую работу, которая полностью соответствует техническому заданию, пояснительная записка имеет логичное, последовательное изложение материала с соответствующими выводами и обоснованными положениями. При защите студент показывает глубокое знание вопросов темы, легко отвечает на поставленные вопросы.


Хорошо: за курсовую работу, которая полностью соответствует техническому заданию, пояснительная записка имеет незначительные недочёты в расчётах, которые незначительно сказываются на полученных результатах, студент без особых затруднений отвечает на поставленные вопросы.

Удовлетворительно: за курсовую работу, которая не полностью соответствует техническому заданию, пояснительная записка имеет недочёты в расчётах, которые привели к получению неправильных результатов, студент отвечает на большую часть вопросов.

Неудовлетворительно: за курсовую работу, которая полностью не соответствует техническому заданию, пояснительная записка имеет существенные ошибки в расчётах, часть заданий не выполнена, при защите работы студент затрудняется отвечать на поставленные вопросы по ее теме, не знает теории вопроса, при ответе допускает существенные ошибки.

Пример

Структурная схема исследуемой системы изображена на рисунке 2.

Рис. 2. Структурная схема системы

1. Системы уравнений для первого и второго выхода:

$$\begin{cases} Y_{11} = U_{11}W_1 + Y_{21}W_4^{-1}W_2 \\ Y_{12} = U_{12}W_1 + Y_{22}W_4^{-1}W_2 \end{cases}, \qquad \begin{cases} Y_{21} = U_{11}W_3W_4 + U_{21}W_4 \\ Y_{22} = U_{12}W_3W_4 + U_{22}W_4 \end{cases}.$$

Системы уравнений приведены к матричному виду:

$$\begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \end{bmatrix} = \begin{bmatrix} U_{11} & Y_{21} \\ U_{12} & Y_{22} \\ & & U_{11} & U_{21} \\ & & U_{12} & U_{22} \end{bmatrix} \cdot \begin{bmatrix} W_{1} \\ W_{4}^{-1}W_{2} \\ W_{3}W_{4} \\ W_{4} \end{bmatrix}$$

С помощью системы блочных матричных уравнений получены обобщенные временные последовательности:

$$W_{1} = \frac{\begin{vmatrix} Y_{11} & Y_{21} \\ Y_{12} & Y_{22} \end{vmatrix}}{\begin{vmatrix} U_{11} & Y_{21} \\ U_{12} & Y_{22} \end{vmatrix}} = \frac{Y_{11}Y_{22} - Y_{12}Y_{21}}{U_{11}Y_{22} - U_{12}Y_{21}}; \qquad W_{3}W_{4} = \frac{\begin{vmatrix} Y_{21} & U_{21} \\ Y_{22} & U_{22} \end{vmatrix}}{\begin{vmatrix} U_{11} & U_{21} \\ U_{12} & U_{22} \end{vmatrix}} = \frac{Y_{21}U_{22} - Y_{22}U_{21}}{U_{11}U_{22} - U_{12}U_{21}};$$

$$W_{4} = \frac{\begin{vmatrix} U_{11} & Y_{21} \\ U_{12} & Y_{22} \end{vmatrix}}{\begin{vmatrix} U_{11} & Y_{21} \\ U_{12} & Y_{22} \end{vmatrix}} = \frac{U_{11}Y_{22} - U_{12}Y_{11}}{U_{11}Y_{22} - U_{12}Y_{21}}; \qquad W_{4} = \frac{\begin{vmatrix} U_{11} & Y_{21} \\ U_{12} & Y_{22} \end{vmatrix}}{\begin{vmatrix} U_{11} & U_{21} \\ U_{12} & U_{22} \end{vmatrix}} = \frac{U_{11}Y_{22} - U_{12}Y_{21}}{U_{11}U_{22} - U_{12}U_{21}};$$

$$W_{2} = (W_{4}^{-1}W_{2})W_{4} = \frac{U_{11}Y_{12} - U_{12}Y_{11}}{U_{11}U_{22} - U_{12}U_{21}}; \qquad W_{3} = (W_{3}W_{4})\frac{1}{W_{4}} = \frac{Y_{21}U_{22} - Y_{22}U_{21}}{U_{11}Y_{22} - U_{12}Y_{21}}.$$

2. Значения параметров звеньев выбираются таким образом, чтобы обеспечить устойчивость системы.

В программе SimACS построена модель системы для двух опытов (рис. 3).

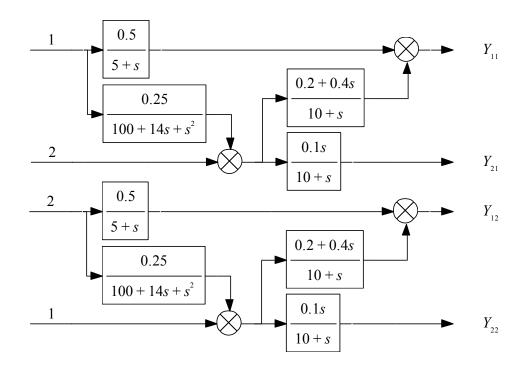


Рис. 3. Модель системы с выбранными параметрами Проведено моделирование за 2 секунды и в результате получены выходные сигналы системы для двух опытов, которые представлены на рисунке 4.

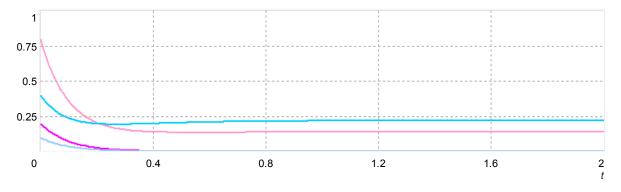


Рис. 4. Графики выходов системы для двух опытов

3. Анализ сигналов в начальный момент времени. Выходные сигналы:

$$\begin{cases} Y_{11} = U_{11}W_1(\infty) + Y_{21}W_4^{-1}(\infty)W_2(\infty) \\ Y_{12} = U_{12}W_1(\infty) + Y_{22}W_4^{-1}(\infty)W_2(\infty) \end{cases}, \qquad \begin{cases} Y_{21} = U_{11}W_3(\infty)W_4(\infty) + U_{21}W_4(\infty) \\ Y_{22} = U_{12}W_3(\infty)W_4(\infty) + U_{22}W_4(\infty) \end{cases}.$$

Сначала определяются сигналы Y_{21} и Y_{22} , затем их значения подставляются в выражения для нахождения Y_{11} и Y_{12} . В случае если сигналы взаимозависимы, необходимо сначала получить независимые выражения, а потом подставить соответствующие значения.

Значения четырёх передаточных функций равны 0, 0,4, 0 и 0,1 соответственно, тогда значения сигналов для первого выхода равны 0,8 и 0,4, а значения сигналов для второго выхода равны 0,2 и 0,1.

Анализ сигналов в конечный момент времени.

Выходные сигналы:

$$\begin{cases} Y_{11} = U_{11}W_1(0) + Y_{21}W_4^{-1}(0)W_2(0) \\ Y_{12} = U_{12}W_1(0) + Y_{22}W_4^{-1}(0)W_2(0) \end{cases}, \begin{cases} Y_{21} = U_{11}W_3(0)W_4(0) + U_{21}W_4(0) \\ Y_{22} = U_{12}W_3(0)W_4(0) + U_{22}W_4(0) \end{cases}.$$

Значения четырёх передаточных функций равны $0,1,\ 0,02,\ 0,0025$ и 0 соответственно, тогда значения сигналов для первого выхода равны 0,14 и 0,22, а значения сигналов для второго выхода равны 0.

Результаты сравнения значений выходных сигналов, полученных теоретическим и экспериментальным методами, сведены в таблицы 7 и 8.

Таблица 7

Параметр	<i>Y</i> ₁₁	Y_{12}	Y_{21}	Y_{22}
Теоретическое	0,8	0,4	0,2	0,1
Экспериментальное	0,8	0,4	0,2	0,1
Погрешность, %	0	0	0	0
				Таблица 8

				2 0001111200 0
Параметр	Y_{11}	Y_{12}	<i>Y</i> ₂₁	Y_{22}
Теоретическое	0,14	0,22	0	0
Экспериментальное	0.140045	0,220091	0	0
Погрешность, %	0,03	0,04	0	-

4. Идентификация во временной области.

Используя обобщенные временные последовательности, путем применения свертки сигналов для каждой передаточной функции отдельно формируются числитель и знаменатель. Например, для звена W_1 модель системы со сверткой имеет следующий вид (рис. 5):

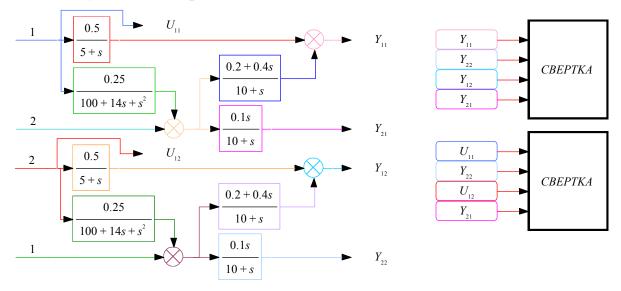


Рис. 5. Модель системы для получения обобщенных координат W_1

На рисунке 6 представлен диалог с результатами идентификации W_1 .

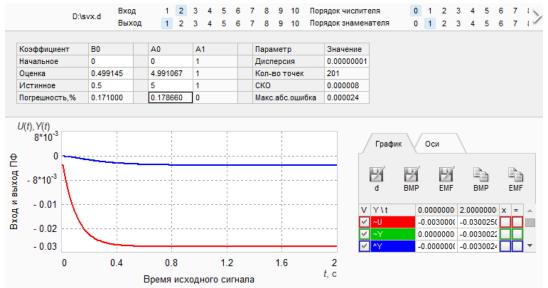


Рис. 6. Диалог с результатами идентификации W_1

Сравнение оценочных значений параметров с истинными сведено в табл. 9. Таблица 9

			1
Коэффициент	B0	A0	A1
Оценка	0,499145	4,991067	1
Истинное	0,5	5	1
Погрешность, %	0,171	0,17866	0

Аналогично выполняется идентификация для остальных звеньев.

5. В программе MathCAD проектируются звенья исследуемой системы, по которым осуществляется анализ в начальный и конечный момент времени. Для каждого звена строится график АФЧХ. Например, для первого звена окно программы имеет вид (рис. 7):

Рис. 7. Окно программы MathCAD с расчётами

Полученные значения передаточных функций при помощи пределов и при помощи обобщенных временных последовательностей совпадают.

Действительная и мнимая части передаточной функции выведены в файл PRN, который применяется для идентификации в частотной области.

6. Идентификация в частотной области.

На рисунке 8 представлен диалог с результатами идентификации W_1 .

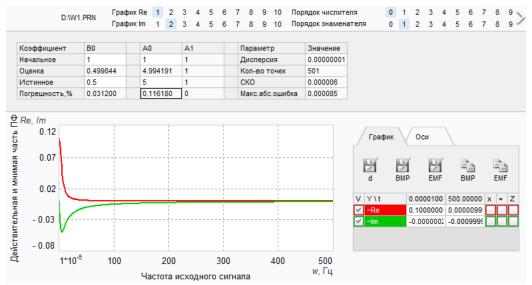


Рис. 8. Диалог с результатами идентификации W_1

Сравнение оценочных значений параметров с истинными сведено в табл. 10. Таблица 10

			•
Коэффициент	В0	A0	A1
Оценка	0,499844	4,994191	1
Истинное	0,5	5	1
Погрешность, %	0,0312	0,11618	0

Аналогично выполняется идентификация для остальных звеньев.

7. Идентификация исследуемого объекта другим методом осуществляется путём регистрации всех выходных сигналов системы с последующим указанием неизвестных параметров звеньев модели.

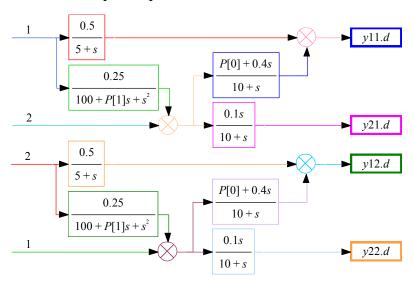


Рис. 9. Модель системы для проведения идентификации

В результате проведения идентификации получены оценочные значения параметров 0,2 и 14. Они полностью совпадают с истинными значениями. Среднеквадратичное отклонение равно 0. Карта идентификации (рис. 10):

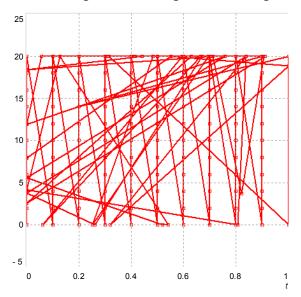


Рис. 10. Карта поиска минимального среднеквадратичного отклонения

Аналогично выполняется идентификация для остальных случаев.

Часть 2.

Имеется реальная система, на вход которой подаётся стабильное напряжение U, равное 1 В. Уравнения, описывающие процессы реальной системы, имеют следующий вид:

$$\begin{split} T_{\mathcal{I}} \dot{\mathsf{U}}_{\mathcal{A}} & \xrightarrow{--_{\mathcal{I}} \mathcal{A}} J_{\mathcal{I}} = K_{\mathcal{I}} U - U_{\mathcal{A}}, \\ \dot{\mathsf{U}}_{\mathcal{A}} & \xrightarrow{--_{\mathcal{A}} J_{\mathcal{I}}}. \end{split}$$

Тогда для каждого уравнения в левой части уравнения необходимо оставить только старшую производную и выполнить подстановку s = d/dt.

$$\begin{split} sU_{\mathcal{A}} &= \frac{K_{\mathcal{A}}}{T_{\mathcal{A}}}U - \frac{1}{T_{\mathcal{A}}}U_{\mathcal{A}} - \frac{K_{\mathcal{A}\mathcal{A}}}{T_{\mathcal{A}}}U_{\mathcal{A}}, \\ s^2U_{\mathcal{A}} &= K_{\mathcal{A}}U_{\mathcal{A}} - T_{\mathcal{A}}sU_{\mathcal{A}}. \end{split}$$

Структурная схема системы строится путём реализации каждого уравнения при помощи суммирующих блоков и интеграторов. Подставив значения параметров Kд=0,5, Kдд=10, Ks=0,2, Tд=10, Ts=0,4, будет получена следующая структурная схема (рис. 11) и выходной процесс (рис. 12):

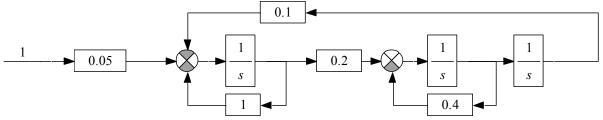


Рис. 11. Структурная схема исследуемой системы

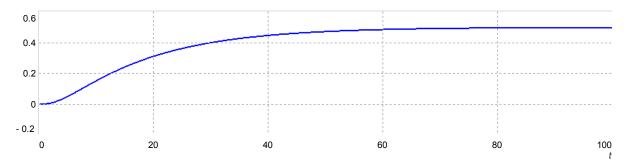


Рис. 12. Выход системы

Для проведения идентификации на структурную схему добавляется компаратор и задаются неизвестные параметры (рис. 13):

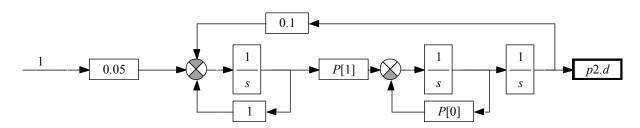


Рис. 13. Структурная схема системы для проведения идентификации В результате получены значения параметров 0,4 и 0,2, что соответствует истинным значениям. Среднеквадратичное отклонение составило 0.

Аналогично проводится идентификация для одного и трёх параметров.

4. Экзамен

Процедура проведения

Письменные ответы на вопросы. Студенту необходимо ответить на теоретический вопрос по математическим моделям объектов и процессов, решить задачу на нахождение обобщенных временных последовательностей и выполнить идентификацию нелинейного объекта на ЭВМ.

Критерии оценивания

Отпично: правильный ответ на 1 вопрос, письменное решение задачи и выполнение идентификации на ЭВМ.

Хорошо: правильное письменное решение задачи и выполнение идентификации на ЭВМ, либо правильный ответ на 1 вопрос и правильное письменное решение задачи.

Удовлетворительно: только правильное письменное решение задачи.

Неудовлетворительно: неправильное решение задачи.

Пример

Теоретическая часть. В билет помещается один из вопросов:

1. Основные компоненты конструирования моделей по результатам наблюдений.

- 2. Причины несовершенства моделей.
- 3. Постановка задачи идентификации во временной области двумерного объекта.
- 4. Классификация признаков, присущая различным методам идентификации.
 - 5. Понятие идентификации в широком смысле.
 - 6. Понятие идентификации в узком смысле.
 - 7. Обобщенная процедура идентификации.
 - 8. Классификация многомерных САР по принципу действия.
 - 9. Активная идентификация.
 - 10. Классификация многомерных САР по целевому назначению.
 - 11. Пассивная идентификация.
- 12. Постановка задачи идентификации в частотной области двумерного объекта.
 - 13. Критерии идентификации.
 - 14. Условия повышения качества идентификации.
 - 15. Модель Гаммерштейна. Структурная схема, функция выходного сигнала.
- 16. Основные причины расхождения процесса фильтрации частотного метода идентификации двумерных динамических объектов.
 - 17. Модель Винера. Структурная схема, функция выходного сигнала.
- 18. Количественная мера близости объекта и модели в пространстве выходных сигналов при идентификации частотным методом.
 - 19. Модель общего вида. Структурная схема, функция выходного сигнала.
 - 20. Первая группа перекрестных связей многомерных САР.
- 21. Модель параллельных цепочек. Структурная схема, функция выходного сигнала.
 - 22. Вторая группа перекрестных связей многомерных САР.
 - 23. Виды оценок.
- 24. Классификация многомерных САР по характеру зависимостей статических ошибок регулирования от внешних воздействий.
 - 25. Прямые и обратные перекрестные связи.
 - 26. Погрешности в методе фильтрации Калмана.
- 27. Влияние погрешностей в методе фильтрации Калмана на систему и методы их устранения.
- 28. Классификация многомерных САР по принципу использования перекрестных связей в регуляторе МСАР.
 - 29. Постановка задачи идентификации одномерного динамического объекта.
- 30. Классификация многомерных САР по соотношению между числом регулируемых и управляющих координат.
 - 31. Методы идентификации.
 - 32. Управляемость. Определение и основные условия.
 - 33. Классификация идентифицируемых элементов.
 - 34. Наблюдаемость. Определение и основные условия.
 - 35. Области применения идентификации.

- 36. Идентифицируемость. Определение и основные условия.
- 37. Объекты идентификации.
- 38. Виды используемых функций при идентификации. Составляющие сигналов.
 - 39. Понятие структуры, элемента и математической модели.
- 40. Основные отличия идентификации по временным и частотным характеристикам.

Практическая часть состоит в нахождении блочных матриц для заданной системы и аналогична выполнению контрольной работы. Однако дополнительно необходимо определить для каждой передаточной функции обобщенные временные последовательности, и провести теоретический анализ системы в начальный и конечный моменты времени.

Экспериментальная часть состоит в проведении компьютерного эксперимента для идентификации заданной нелинейной функции.

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Электронная учебно-методическая документация (табл. 11):

Вид литературы	Наименование разработки	Наименование ресурса	Доступность
Основная литература	Плотникова, Н. В. Математические модели объектов и процессов, их моделирование и идентификация [Текст]: учеб. пособие по направлению 09.04.01 "Информатика и вычисл. техника" и др. / Н. В. Плотникова, В. П. Щербаков; ЮжУрал. гос. ун-т, Каф. Системы упр.; ЮУрГУ Челябинск: Издательский Центр ЮУрГУ, 2015. — 23 с. — Режим доступа: http://lib.susu.ru/ftd?base=SUSU_METHOD&key=0 00555295&dtype=F&etype=.pdf — Загл. с экрана.	Электронный каталог ЮУрГУ	Интернет / Свободный
Основная литература	Плохотников, К.Э. Методы разработки математических моделей и вычислительный эксперимент на базе пакета MATLAB. Курс лекций [Электронный ресурс] : учебное пособие / К.Э. Плохотников. — Электрон. дан. — Москва : СОЛОН-Пресс, 2017. — 628 с. — Режим доступа: https://e.lanbook.com/book/92996. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный
Основная литература	Задорожная, Н.М. Основы теории и проектирования систем управления. Методология. Математические модели [Электронный ресурс]: методические указания / Н.М. Задорожная. — Электрон. дан. — Москва: МГТУ им. Н.Э. Баумана, 2016. — 36 с. — Режим доступа: https://e.lanbook.com/book/103603. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный

Продолжение табл. 11

	T	<u> </u>	ение таол. 11
Вид литературы	Наименование разработки	Наименование ресурса	Доступность
Основная литература	Горлач, Б.А. Математическое моделирование. Построение моделей и численная реализация [Электронный ресурс]: учебное пособие / Б.А. Горлач, В.Г. Шахов. — Электрон. дан. — Санкт-Петербург: Лань, 2018. — 292 с. — Режим доступа: https://e.lanbook.com/book/103190. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный
Основная литература	Голубева, Н.В. Математическое моделирование систем и процессов [Электронный ресурс]: учебное пособие / Н.В. Голубева. — Электрон. дан. — Санкт-Петербург: Лань, 2016. — 192 с. — Режим доступа: https://e.lanbook.com/book/76825. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный
Дополни- тельная литература	Щербаков, В.П. Моделирование и автоматизированное проектирование систем управления. Учебное пособие / В.П. Щербаков, О.О. Павловская. — Челябинск: Издательский центр ЮУрГУ, 2015. — 32 с. — Режим доступа: http://lib.susu.ru/ftd?base=SUSU_METHOD&key=0 00555207&dtype=F&etype=.pdf — Загл. с экрана.	Электронный каталог ЮУрГУ	Интернет / Свободный
Дополни- тельная литература	Алпатов, Ю.Н. Моделирование процессов и систем управления [Электронный ресурс]: учебное пособие / Ю.Н. Алпатов. — Электрон. дан. — Санкт-Петербург: Лань, 2018. — 140 с. — Режим доступа: https://e.lanbook.com/book/106730. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный
Дополни- тельная литература	Казиев, В.М. Введение в анализ, синтез и моделирование систем [Электронный ресурс]: учебное пособие / В.М. Казиев. — Электрон. дан. — Москва:, 2016. — 270 с. — Режим доступа: https://e.lanbook.com/book/100674. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный
Дополни- тельная литература	Решмин, Б.И. Имитационное моделирование и системы управления [Электронный ресурс]: учебное пособие / Б.И. Решмин. — Электрон. дан. — Вологда: "Инфра-Инженерия", 2016. — 74 с. — Режим доступа: https://e.lanbook.com/book/80296. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный
Дополни- тельная литература	Ощепков, А.Ю. Системы автоматического управления: теория, применение, моделирование в МАТLАВ [Электронный ресурс]: учебное пособие / А.Ю. Ощепков. — Электрон. дан. — Санкт-Петербург: Лань, 2018. — 208 с. — Режим доступа: https://e.lanbook.com/book/104954. — Загл. с экрана.	Электронно- библиотечная система издательства Лань	Интернет / Авторизо- ванный

ОГЛАВЛЕНИЕ

Общие сведения	1
Содержание дисциплины	
Лекции	
Практические занятия	
Самостоятельная работа студента	
Паспорт фонда оценочных средств	
Типовые задания, процедуры проведения, критерии оценивания	
1. Тестирование	
2. Контрольная работа	
3. Курсовая работа	
4. Экзамен	
Учебно-методическое и информационное обеспечение дисциплины	