МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «ДИСКРЕТНАЯ МАТЕМАТИКА»

ДЛЯ НАПРАВЛЕНИЯ 09.03.01 ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА ФОРМА ОБУЧЕНИЯ: ЗАОЧНАЯ

ЧЕРНЕЦКИЙ В.О.

Оглавление

Общие сведения	
Лекции	
Практические работы	
Самостоятельная работа студентов	
Учебно-методическая документация по дисциплине	

Общие сведения

Цели и задачи дисциплины

- 1. Ознакомление с основными принципами комбинаторного анализа и основными понятиями теории графов.
- 2. Овладение стандартными методами решения типовых комбинаторных задач.
- 3. Формирование умения формулировать в комбинаторно-графовых терминах задачи, связанные с дискретными объектами.

Компетенции, достижение которых планируется по завершении изучения курса:

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине (ЗУНы)
ОП ВО (компетенции)	обучения по дисциплине (ЗУпы)
ОК-7 способностью к самоорганизации и самообразованию	исключения; методы решения рекуррентных соотношений; основные характеристики графов; специальные цепи и циклы в графе; понятие основного дерева в графе.
	Уметь:решать практические задачи, свя-
	занные с построением конкретных ком-
	бинаторных конфигураций и с подсчётом

бинаторных конфигураций и с подсчётом их количества; строить производящие

функции конкретных последовательностей и решать обратную задачу; решать простейшие рекуррентные соотношения; находить количество решений целочисленных линейных уравнений в натуральных числах; строить граф по его матрицам смежности или инцидентности и решать обратную задачу; строить циклы специального вида в графе; находить хроматический многочлен простейших графов. Владеть:аппаратом и методами теории графов и комбинаторики для грамотной математической постановки и анализа конкретных задач, возникающих в профессиональной деятельности.

Разделы (модули) дисциплины

№ раздела	Наименование разделов дисциплины
1	Множества
2	Элементы комбинаторики
3	Введение в теорию графов

Формы контроля:

1. Экзамен

Лекции

Объем лекций: 8 ч.

Перечень лекций:

No	\mathcal{N}_{2}	Наименование или краткое содержание лекционного занятия
лекции	раздела	паименование или краткое содержание лекционного занятия
1		Множества и операции над ними. Отношения. Свойства отношений.
		Отношение эквивалентности
		Правило произведения. Число подмножеств конечного множества.
2		Размещения,Сочетания,Перестановки.Перестановки с повторениями.
		Полиномиальная формула
3	3	Графы. Определения и примеры.Связность. Метрические характери-

		стики. Гамильтоновы графы. Эйлеровы графы. Деревья.
4	3	Хроматический многочлен графа. Укладки графов. Планарные графы. Формула Эйлера. Ориентированные графы. Нахождение кратчайших путей в орграфе. Потоки в сетях. Паросочетания. Теорема Холла.

Практические работы

Объем практических работ: 8 ч.

Перечень практических работ:

No॒	$N_{\underline{0}}$	Наименование или краткое содержание практического занятия, семи-			
занятия	раздела	нара			
1		Множества и операции над ними. Отношения. Свойства отношений.			
1		Отношение эквивалентности			
		Правило произведения. Число подмножеств конечного множества.			
2		Размещения,Сочетания,Перестановки.Перестановки с повторениями.			
		Полиномиальная формула			
3	1	Графы. Определения и примеры.Связность. Метрические характери-			
3		стики. Гамильтоновы графы. Эйлеровы графы. Деревья.			
		Хроматический многочлен графа. Укладки графов. Планарные гра-			
4	3	фы. Формула Эйлера. Ориентированные графы. Нахождение крат-			
		чайших путей в орграфе. Потоки в сетях. Паросочетания. Теорема			
		Холла.			

Самостоятельная работа студентов

Объем самостоятельной работы студентов: 128 ч.

Перечень видов самостоятельной работы:

No	Вид СРС	Форма	Список литературы	Кол-	Компе-
Π/Π		контроля		во	тенция
		вида СРС		часов	
1	Подготовка к	Экзамен	1. ПУМД, доп. лит., 1, с. 4-	128	ОК-7
	экзамену		150. 2. ЭУМД, осн.лит., 1,		
	•		c. 6-123		

Экзамен

Вопросы, выносимые на экзамен:

- 1. Операции над множествами и их свойства
- 2. Законы де Моргана
- 3. Правило произведения
- 4. N-местное отношение на множестве
- 5. Отношение сравнимости по модулю m и его свойства
- 6. Отношение эквивалентности. Классы эквивалентности
- 7. Отношения строгого и нестрогого порядка
- 8. Размещения из n по m без повторений и с повторениями
- 9. Число сочетаний без повторения и с повторениями
- 10. Число перестановок
- 11. Полиномиальная формула. Формула бинома Ньютона
- 12. Формула включения-исключения
- 13. Понятие беспорядка. Число беспорядков
- 14. Задача о беспорядках и встречах
- 15. Сюръекция
- 16. Обобщенная формула включения-исключения
- 17. Линейное рекуреентное соотношение k-го порядка
- 18. Производящая функция последовательности
- 19 Лемма о рукопожатиях
- 20. Изоморфные графы
- 21. Матрица смежности графа
- 22. Двудольный граф
- 23. Операции над графами
- 24. Метрические характеристики графа
- 25. гамильтонов и полугамильтонов граф. Задача коммивояжера
- 26. Достаточные условия гамильтоновости графа
- 27. Алгоритм Дейкстры нахождения кратчайших путей в ориентированном графе
- 28. Критерий существования совершенного паросочетания в двудольном графе

Процедура проведения и оценивания:

На экзамене студент получает билет, содержащий 3 вопроса, относящихся к разным разделам курса. На подготовку отводится 40 минут. После этого студент отвечает устно.

Отлично: ставится, если студент показал глубокие знания по всем вопросам билета, ответ на вопросы излагался последовательно и логично. Дополнительные вопросы не вызвали затруднений.

Хорошо: ставится, если студент показал достаточные знания по всем вопросам билета, без особых затруднений ответил на дополнительные вопросы.

Удовлетворительно: ставится, если студент показал поверхностные знания по одному или более вопросу, или дополнительные вопросы вызвали затруднения

Неудовлетворительно: ставится, если студент не ответил на два или более вопросов билета, или в ответах допущены грубые ошибки, свидетельствующие о незнании материала.

Учебно-методическая документация по дисциплине

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Вся высшая математика Т. 7 Учеб. для втузов М. Л. Краснов, А. И. Киселев, Г. И. Макаренко и др. М.: КомКнига: URSS, 2006
 - 2. Эвнин, А. Ю. Дискретная математика [Текст] задачник : учеб. пособие для мат. специальностей ун-тов А. Ю. Эвнин ; Юж.-Урал. гос. ун-т, Каф. Прикл. математика ; ЮУрГУ. Челябинск: Издательский Центр ЮУр-ГУ, 2009. 265 с. ил.
- б) дополнительная литература:
 - 1. Кузнецов, О. П. Дискретная математика для инженера [Текст] О. П. Кузнецов. 5-е изд., стер. СПб. и др.: Лань, 2007. 394, [1] с.
 - 2. Эвнин, А. Ю. Дискретная математика Конспект лекций ЮУрГУ, Каф. Прикл. математика. Челябинск: Издательство ЮУрГУ, 1998. 176 с. ил..
- в) отечественные и зарубежные журналы по дисциплине
 - 1. Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика / Юж.-Урал. гос. ун-т; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2012-
 - 2. Проблемы управления и информатики : Междунар. науч.-техн. журн. / Нац. акад. наук Украины, Ин-т кибернетики им. В. М. Глушкова, Ин-т космич. исслед. НАН Украины и ГКА Украины. Киев , 1991-

Электронная учебно-методическая документация

- а) основная литература:
 - 1. Мальцев, И.А. Дискретная математика. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2011. 304 с. Режим доступа: http://e.lanbook.com/book/638 Загл. с экрана.
 - 2. Микони, С.В. Дискретная математика для бакалавра: множества, отношения, функции, графы. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2012. 192 с. Режим доступа: http://e.lanbook.com/book/4316 Загл. с экрана.
- б) дополнительная литература:

- 3. Кузнецов, О.П. Дискретная математика для инженера. [Электронный ресурс] Электрон. дан. СПб. : Лань, 2009. 400 с. Режим доступа: http://e.lanbook.com/book/220 Загл. с экрана.
- 4. Шевелев, Ю.П. Сборник задач по дискретной математике (для практических занятий в группах). [Электронный ресурс] / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев. Электрон. дан. СПб. : Лань, 2013. 528 с. Режим доступа: http://e.lanbook.com/book/5251 Загл. с экрана.